Grade 12 – Physics

Unit 1: Mechanics

Chapter 1: Energy

Prepared & presented by: Mr. Mohamad Seif

Consider pendulum is formed of an inextensible and mass less string of length l = 0.45m having one of its ends fixed while the other end carries a particle (P) of mass $100g. g = 10m / s^2$.

The pendulum is shifted from its equilibrium position by $\theta_m = 90^{\circ}$, then released without initial velocity.

Take the horizontal plane containing FA as a gravitational potential energy reference for the system [(S), Earth].

We neglect friction on the axis through O and air resistance.

- 1.Calculate the initial mechanical energy of the system [(S),Earth] when (P) was at D.
- 2.Determine the expression of the mechanical energy of the system [(S),Earth] in terms of l, m, g, V and θ , where v is the speed of (P) when the string passes through a position making an angle θ with the vertical.
- 3.Determine the value of θ , (0 < θ < 90°), for which the kinetic energy of (P) is equal to the gravitational potential energy of the system [(S),Earth].
- 4. Calculate the magnitude of the velocity V_0 of (P) as it passes through its equilibrium position.

 $(\mathbf{P_1})$

$$l = 0.45m$$
; $m = 0.1$ kg; $g = 10m/s^2$; $\theta_m = 90^{\circ}$, $V_D = 0m/s$; $f = 0N$

1.Calculate the initial mechanical energy of the system [(S),Earth] when (P) was at D.

$$ME_D = KE_D + PE_D$$
 $ME_D = \frac{1}{2}mV_D^2 + mgh_D$
 $ME_D = \frac{1}{2}(0.1)(0)^2 + 0.1 \times 10 \times l(1 - cos\theta)$

$$ME_D = 0 + 0.1 \times 10 \times 0.45(1 - \cos 90^{\circ})$$
 ME_D = 0.45J

$$l = 0.45m$$
; $m = 0.1$ kg; $g = 10m/s^2$; $\theta_m = 90^{\circ}$, $V_D = 0m/s$; $f = 0N$

2.Determine the expression of the ME of the system [(S),Earth] in terms of l, m, g, V and θ , where v is the speed of (P) when the string making an angle θ with the vertical.

$$ME = KE + PE$$

$$ME = \frac{1}{2}mV^2 + mgh$$

$$ME = \frac{1}{2}mV^2 + mgl(1 - cos\theta)$$

$$ME = \frac{1}{2}mV^2 + mgl(1 - cos\theta)$$

$$l = 0.45m$$
; $m = 0.1$ kg; $g = 10m/s^2$; $\theta_m = 90^{\circ}$, $V_D = 0m/s$; $f = 0N$

3.Determine the value of θ , $(0 < \theta < 90^{\circ})$, for which the kinetic energy of (P) is equal to the gravitational potential energy of the system [(S),Earth]. 2PE = 0.45

The ME is conserved, because friction is neglected; then:

$$ME = ME_D$$
 \Longrightarrow $KE + PE = 0.45J$

But given KE = PE then: PE + PE = 0.45J

$$2mgl(1-cos\theta)=0.45J$$

$$2 \times 0.1 \times 10 \times 0.45(1$$
$$-\cos\theta) = 0.45J$$

$$cos\theta = 0.5 \implies \theta = 60^{\circ}$$

Energy

20 min

l = 0.45m; m = 0.1kg; $g = 10m/s^2$; $\theta_m = 90^{\circ}$, $V_D = 0m/s$; f = 0N

4. Calculate the magnitude of the velocity V_0 of (P) as it passes

through its equilibrium position

$$ME_{o} = KE_{o} + GPE_{o}$$

$$0.45J = \frac{1}{2}mV_0^2 + mgh_0$$

$$0.45J = 0.5 \times 0.1V_0^2 + 0.1 \times 10(0)$$

$$0.45J = 0.05V_0^2$$

$$V_0^2 = \frac{0.45}{0.05}$$

$$V_0^2=9$$

$$V_0 = 3m/s$$

When (P) passes through the equilibrium position, the string is cut, and (P) enters in a collision with a stationary particle (P_1) of mass $m_1 = 200g$.

As a result of collision (P_1) moves along the frictionless horizontal track FA and reaches A with the speed $V_1 = 2m/s$.

 (P_1) continues along the line of greatest slope of the inclined frictionless plane AB that makes an angle $\alpha = 30^{\circ}$ with the horizontal.

- a. Determine the altitude of the point M between A and B at which (P_1) turns back.
- b. In fact, AB is not frictionless, (P_1) reaches a point N and turns back, where AN = 20 cm.

Calculate the magnitude of the force of friction (assumed constant) along AN.

 $(\mathbf{P_1})$

 $m_1 = 0.2 \text{kg; g} = 10 m/s^2; f = 0N; V_1 = 2 m/s; \alpha = 30^\circ$

a) Determine the altitude of the point M between A and B at which (P_1) turns back.

At point M the particle (P_1) returns then: $V_M = 0$ $ME_A = ME_M$

$$KE_A + PE_A = KE_M + PE_M \triangle DEMY$$

$$\frac{1}{2}mV_A^2 + mgh_A = \frac{1}{2}mV_M^2 + mgh_M$$

$$\frac{1}{2}m_1V_A^2 + m_1gh_A = \frac{1}{2}m_1V_M^2 + m_1gh_M$$

$$0.5 \times 0.2 \times (2)^2 + 0.2 \times 10 \times (0) = 0.5 \times 0.2(0)^2 + 0.2 \times 10 h_M$$

$$0.4 = 2h_M$$

In fact, AB is not frictionless, (P_1) reaches a point N and **b**) turns back, where AN = 20cm.

Calculate the magnitude of the force of friction along AN.

$$ME_N = KE_N + PE_N$$
 $ME_N = 0 + mgh_N$
 $ME_N = 0 + mgANsing$
 $ME_N = 0 + mgANsing$

$$ME_N = 0.2 \times 10 \times 0.2 \sin 30 = 0.2J$$

 $ME_N = 0 + mgANsin\alpha$

 $h_N = ANsin\alpha$

$$\Delta M E_{A \to N} = W_{\overrightarrow{fr}}$$

$$-0.2J = -f_r \times 0.2$$

$$ME_N - ME_A = -f \times AN$$

$$f_r = 1N$$

A particle of mass m = 0.2kg is launched at $t_0 = 0$, from the ground vertically upward with an initial speed v_0 . Take the ground as a level for gravitational potential energy

reference. Use $g = 10m / s^2$

1. Motion without air resistance:

Figure 1 shows the variation of the mechanical energy of the system (Particle; Earth;) as a function of the height z during the ascending phase.

- 1.1. Use the figure to show that, there are no resistive forces.
- 1.2. Determine the initial speed v_0 .
- 1.3. Write the expression of the GPE as a function of the height z, and then draw on the same given figure the graph that represents the variation of the GPE as a function of z.

1.4.Draw on the same given figure the graph that represents the variation of the kinetic

energy of the particle.

1.5.Deduce, graphically, the maximum height Z_{max} reached by the particle.

Energy(J)

$$m = 0.2kg; v_0 = ?; g = 10m / s^2$$

1. Motion without air resistance:

1.1. Use the figure to show that, there are no resistive forces.

Since the ME is constant at ME=10J; then the ME is conserved.

Therfore, the resistive force is not exist

1.2. Determine the initial speed v_0 .

$$ME_0 = GPE + KE$$

$$ME_0 = GPE + KE$$
 $ME_0 = mgh + 1/2mv_0^2$

$$10 = 0.2 \times 10 \times (0) + 1/2 \times 0.2v_0^2$$

$$10 = 0.1v_0^2$$

$$v_0^2 = \frac{10}{0.1} = 100$$

$$v_0 = \sqrt{100} = 10m/s$$

1.3. Write the expression of the GPE as a function of the height z, and then draw on the same given figure the graph that represents the variation of the GPE as a function of z.

$$GPE = mgh$$
 $GPE = 0.2 \times 10 \times z$
 $GPE = 2z$

Z	1	2	3	4	5
GPE = 2z	2	4	6	8	10

1.4.Draw on the same given figure the graph that represents the variation of the kinetic

energy of the particle.

$$ME = GPE + KE$$

$$10 - GPE = KE$$

Z	1	2	3	4	5
GPE = 2z	2	4	6	8	10
KE	8	6	4	2	0

1.5. Deduce, graphically, the maximum height Z_{max} reached by the particle.

At the maximum height Z_{max} reached by the particle; the speed become zero (v=0).

Therfore, KE=0J.

From the graph, KE=0J at Z=5m

Motion with air resistance:

The particle is subjected to air resistance whose direction is opposite to the velocity v of

the particle and whose magnitude is f = 0.5N.

The adjacent figure (2) represents the variations of the kinetic of the particle as a function of the height z, during the ascending of the particle.

- 2.1.Determine the expression of the kinetic energy of the particle as function of z.
- 2.2.Show that the expression of the mechanical energy of the system is ME = -0.5z + 10
- 2.3.Determine the maximum height reached by the particle.

2.4. Show that at any instant t the relation between the algebraic value v of the velocity of the particle and its altitude z above the ground is: $0.1v^2 + 2.5z = 10$

2.5.Deduce the algebraic value of the acceleration of the particle.

Be Sma ACADEN

2.1.Determine the expression of the kinetic energy of the particle as function of z.

The graph of KE is S.t line of general equation:

$$KE = az + b$$

$$a = slope = \frac{KE_2 - KE_1}{Z_2 - Z_1} = \frac{10 - 0}{0 - 4} = -2.5$$

The constant b is the y-intercept:

$$b = 10$$

$$KE = az + bACADEN$$

$$KE = -2.5z + 10$$

2.2. Show that the expression of the mechanical energy of the system is ME = -0.5z +

10

$$ME = GPE + KE$$

$$\mathbf{ME} = \mathbf{mgh} + -2.5z + 10$$

$$ME = 0.2 \times 10z + -2.5z + 10$$

$$ME = 2z + -2.5z + 10$$

$$ME = -0.5z + 10$$

2.3.Determine the maximum height reached by the particle.

At the maximum height Z_{max} reached by the particle; the speed become zero (v=0).

Therfore, KE=0J.

From the graph, KE=0J at Z=4m

2.4. Show that at any instant t the relation between the algebraic value v of the velocity of the particle and its altitude z above the ground is: $0.1v^2 + 2.5z = 10$

$$ME = GPE + KE$$

$$ME = 1/2mv^2 + mgh$$

$$-0.5z + 10 = \frac{1}{2} \times 0.2v^2 + 0.2 \times 10 \times z$$

$$-0.5z + 10 = 0.1v^2 + 2z$$

$$10 = 0.1v^2 + 2z + 0.5z$$

$$10 = 0.1v^2 + 2.5z$$

2.5. Deduce the algebraic value of the acceleration of the particle.

$$10 = 0.1v^2 + 2.5z$$

Derive the above expression w.r.t

$$0 = 0.1[2v.v'] + 2.5.v$$

$$0 = 0.22. a + 2.5$$

$$0.22.a = -2.5$$

$$a = \frac{-2.5}{0.22} = -11.36m/s^2$$

A Very Special
"Thank You!"